Advantages of PET Myocardial Imaging
Legal Disclaimers

These materials were prepared in good faith by MITA as a service to the profession and are believed to be reliable based on current scientific literature. The materials are for educational purposes only and do not replace either the need for individualized patient diagnosis and treatment planning by qualified physicians based on existing good practices or the need for implementation by qualified radiologists or other qualified healthcare practitioners. Neither MITA nor its members are responsible for any diagnostic or treatment outcomes. MITA, its members, and contributors do not assume any responsibility for the user’s compliance with applicable laws and regulations. MITA does not endorse the proprietary products or processes of any one company.
Purpose

- Review the physics and hardware of cardiac PET and compare with SPECT
- Demonstrate and understand the profound differences between the capabilities of PET vs. SPECT
- Review currently available cardiac tracers
Positron Emission Tomography: Basic Principle

Image courtesy of wikipedia_PET-schema accessed March 2016
PET Instrumentation

Conventional SPECT

- Limited count sensitivity
- Limited energy resolution
- Limited spatial and contrast resolution
- Limited accuracy of measuring uptake without AC

Camera Specifications

PET
- 511KeV photons
- LIST mode (most)
- >3 Million counts/sec
- ~35 M counts/study
- Sensitivity (detection of emitted photons) 2-15%
- Spatial resolution <2-3mm

SPECT
- Photon energies <140KeV
- Binned mode (most)
- 500-3000 counts/sec
- 7-10 M counts/study
- Sensitivity 2-3x less than PET → longer acquisition
- Spatial resolution 6-11 mm

Note: numbers refer to reference list at the end of this presentation
27. Saha GB. Basics of Pet Imaging. Springer-Verlag 2010
Attenuation Correction (AC)

- Photon attenuation results from emitted radiation interacting with tissue.
- For PET, because it is dual-photon, attenuation is independent of the point of origin along the line of response (LOR). Therefore, with AC, one can accurately quantify radiotracer activity.
- For SPECT, due to its single-photon emission, attenuation changes are dependent on the point of emission. Therefore, with AC, one cannot accurately quantify radiotracer activity.
Attenuation Correction (AC)
Advantages of PET

- PET scanners have built-in attenuation correction
- Superior resolution due to count sensitivity
- Image quality and quantification are functions of counts/time
Quantification of Flow

- Extent of CAD is inversely proportional to myocardial flow; lower the flow → more CAD is present
- PET technology provides for higher detected count rates over shorter time frames
- Radiotracers are extracted from the blood into the myocardium
- PET can quantify the rate of blood flow to myocardium; expressed in mL/min/g
- FDA-approved software models for Rb-82 and N-13
PET Cardiac Tracers

- Currently Available
 - Rubidium-82 Chloride (perfusion)
 - N-13 Ammonia (perfusion)
 - F-18 FDG (viability)
- In Clinical Trials
 - F-18 labeled agents
 - 0-15 Water (IND only)
Common Cardiac PET Tracers

- The shorter the half-life, the less radiation exposure
- SPECT tracers have longer half-lives and higher radiation exposure

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Half Life</th>
<th>Dose Range</th>
<th>Production Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb-82</td>
<td>75 sec</td>
<td>20–60 mCi</td>
<td>Generator</td>
</tr>
<tr>
<td>N-13 Ammonia</td>
<td>9.8 min</td>
<td>7–20 mCi</td>
<td>Cyclotron</td>
</tr>
<tr>
<td>F-18 FDG</td>
<td>109.8 min</td>
<td>5-15 mCi</td>
<td>Cyclotron</td>
</tr>
</tbody>
</table>

Rest/stress Rb-82 protocols can be accomplished in 30-45 minutes.

Rb-82 20-60 mCi

CT transmission

gated rest

pharmacologic stress

gated stress

CT transmission

Approx 1 min

Approx 7 min

Approx 6 min

Approx 7 min

Approx 1 min

15. Gary Heller and Robert Hendel. Handbook of Nuclear and Cardiac PET. Cardiology: Cardiac SPECT
Cardiac PET Imaging in a Contemporary Clinical Practice

Cardiac PET provides important information pertaining to 3 critical aspects of cardiac diagnosis and management

1. Diagnosis
 - In patients suspected of having CAD because of chest discomfort, dyspnea, arrhythmias, cardiac risk factors, or other clinical findings including acute coronary syndromes

2. Prognosis
 - Extent of ischemia, infarct and viability correlates well with prognosis
 - Risk stratification into subgroups

3. Response to Therapy
 - Adequacy of revascularization
 - Medical reduction of ischemia

Pharmacokinetics and Physics: Benefits of Cardiac PET MPI

- PET MPI uses higher energy tracers (511keV vs. 140KeV for SPECT) with low radiation exposure\(^{11}\)
 - Leads to higher count rates and improved image quality\(^ {1-4}\)
- PET MPI tracers (Rb-82 & N-13 Ammonia) have a high myocardial extraction fraction at peak stress flow\(^ {1,9-10}\)
 - Tracer uptake is more proportional to myocardial blood flow; facilitates better detection of disease
- PET MPI offers attenuation correction on all scans\(^ {1,4-5}\)
 - Reduces ambiguity, enhances interpretive certainty

4. Bateman. Amer J Cardiol 2004
5. Gould, KL. Circulation 1994
What Are the Advantages of Cardiac PET MPI Imaging?

- **Image Quality, Diagnostic Accuracy, Interpretive Certainty**\(^1-5\)
 - Excellent spatial resolution and attenuation correction
 - 95% sensitivity, 95% specificity
 - Better images = greater diagnostic confidence
 - Potential to lower utilization of downstream invasive procedures and associated costs

- **Efficiency**\(^1-2,4\)
 - 30-45 min. complete gated rest / stress studies

- **Prognostic Value, Risk Stratification**\(^3,6\)
 - Useful for making patient management decisions

4. Bateman. Amer J Cardiol 2004
5. Gould KL. Circulation 1994
Summary

- The physics of PET and attributes of the tracers are optimal for MPI\(^1\)-\(^5\), \(^9\)-\(^10\).
- Cardiac PET addresses the need for improved interpretive certainty and greater efficiency\(^1\)-\(^4\).
- Cardiac PET performs well even with challenging patient types (e.g., pharm stress, obese, female) and more accurately identifies multi-vessel disease\(^1\),\(^3\)-\(^4\),\(^6\),\(^7\),\(^16\).
- PET can help improve the management of patients with known or suspected CAD and heart failure\(^1\)-\(^3\),\(^6\),\(^7\),\(^17\)-\(^22\).
- Quantification of myocardial blood flow adds incremental prognostic value\(^17\),\(^21\),\(^22\).
- Use of PET can help to implement a strategy for the reduction of radiation exposure from cardiac imaging procedures\(^24\)-\(^25\).
References

References

References

References

References

References

Important Safety Information

- Image interpretation errors can occur with PET imaging. A negative image does not rule out recurrent prostate cancer and a positive image does not confirm its presence. Clinical correlation, which may include histopathological evaluation, is recommended.

- Hypersensitivity reactions, including anaphylaxis, may occur in patients who receive PET radiopharmaceuticals. Emergency resuscitation equipment and personnel should be immediately available.

- PET/CT imaging contributes to a patient’s overall long-term cumulative radiation exposure, which is associated with an increased risk of cancer. Safe handling practices should be used to minimize radiation exposure to the patient and healthcare providers.

- Adverse reactions, although uncommon, may occur when using PET radiopharmaceuticals. Always refer to the package insert prior to use.